

Consider the following example graph to perform BFS traversal

Step 1:
- Select the vertex **A** as starting point (visit **A**).
- Insert **A** into the Queue.

Queue A

- Step 2:

 Visit all adjacent vertices of **A** which are not visited (**D**, **E**, **B**).

 Insert newly visited vertices into the Queue and delete A from the Queue..

- Visit all adjacent vertices of **D** which are not visited (there is no vertex).
 Delete D from the Queue.

- Visit all adjacent vertices of **E** which are not visited (**C, F**). Insert newly visited vertices into the Queue and delete E from the Queue.

- Visit all adjacent vertices of ${\bf B}$ which are not visited (there is no vertex). Delete ${\bf B}$ from the Queue.

- Visit all adjacent vertices of **C** which are not visited (**G**). Insert newly visited vertex into the Queue and delete **C** from the Queue.

- Visit all adjacent vertices of **F** which are not visited (**there is no vertex**).

 Delete **F** from the Queue.

- Visit all adjacent vertices of ${\bf G}$ which are not visited (there is no vertex). Delete ${\bf G}$ from the Queue.

- Queue became Empty. So, stop the BFS process.Final result of BFS is a Spanning Tree as shown below...

