EC8552- Computer Architecture And Organization

UNIT - 11
ARITHMETIC

21 INTRODUCTION

Data is manipulated by using the arithmetic instructions in digital computers to give
solution for the computation problems. Theaddition, subtraction, multiplicationanddivision
are the four basic arithmetic operations. Arithmetic processing unit is responsible for
executing these operations and it is located in central processing unit.

The arithmetic instructions are performed on binary or decimal data. Fixed-point
numbers are used to represent integers or fractions. These numbers can be signed or
unsigned negative numbers. A wide range of arithmetic operations can be derived from the
basic operations.

Signed and Unsigned Numbers:
Signed numbers:

These numbers require an arithmetic sign. The most significant bit of a binary
number is used to represent the sign bit. If the sign bit is equal to zero, the signed binary
numberispositive; otherwise, itis negative. The remaining bits represent the actual number.
The negative numbers may be represented either in a signed magnitude or signed
complement representation. There are three ways of representing negative fixed point

. Binary numbers signed magnitude
. Signed 71s complement
. Signed (Zrs complement

Unsigned binary numbers:

These are positive numbers and thus do not require an arithmetic sign. An m-bit
unsigned number represents all numbers in the range 0 to 2m 4 1. For example, the range
of 16-bit unsigned binary numbers is from 0 to 65,53510 in decimal and from 0000 to
FFFF16 in

hexadecimal.
Signed Magnitude Representation:

The most significant bit (MSB) represents the sign. A 1in the MSB bit position denotes
a negative number and 0 denotes a positive number. The remaining n - 72 bits are preserved
and represent the magnitude of the number.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.2 Computer Organization & Instructions
Examples:
Number Signed Magnitude RepresentatioJl

+3 0011

-3 1011

0 0000

-0 1011

5 0101

-5 1101

One’s Complement Representation:

)n oners complement, positive numbers remain unchanged as before with the sign-
magnitude numbers. Negative numbers are represented by taking the oners complement
(inversion, negation) of the unsigned positive number. Since positive numbers always start
with a 0, the complement will always start with a 1 to indicate a negative number.

The oners complement of a negative binary number is the complement of its positive

counterpart, so to take the one;s complement of a binary number.

Number One’s complement
Representation
00001000 (+8) 11110111
10001000(-8) 01110111
00001100(+12) 11110011
10001100(-12) 01110011

Two’s Complement Representation:

)n twors complement, the positive numbers are exactly the same as before for
unsigned binary numbers. A negative number, is represented by a binary number, which

when added to its corresponding positive equivalent results in zero.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.4 Arithmetic

)n twors complement form, a negative number is the (5s complement of its positive
number with the subtraction of two numbers being A - B = A + i {Z;s complement of B : using
much the same process as before as basically, twors complement is adding % to oners
complement of the number.

The main difference between 12 s complement and 22 s complement is that 12 s
complement has two representations of 0 (+0): 00000000, and (-0): 11111111, In 22 s
complement, there is only one representation for zero: 00000000 (0).

+0: 00000000
1s complement of -0:

-0: 00000000 (Signed magnitude representation)
RuRkRiAL whis complement representation:

These shows in {15 complement representation both +* and -0 takes same value. This
solves the double-zero problem, which existed in the 7;s complement.

Example 2.1: Convert 24 and -2+ to 32 bit binary numbers.
+2= 0000 0000 0000 0010 (16 bits)

= 0000 0000 0000 0000 0000 0000 0000 0010 (32 bits)

It is converted to a 32-bit nhumber by making 16 copies of the value in the most significant bit
(0)and placing thatin the left-hand half of the word.

2=0000 0000 00000010

-lz=ts complement of [+7
11111111 1111 1127 i7s complement of (2; + 1
=1111 1111 1111 1110 (16 bits)

= 1111 1111 1111 1111 1111 1111 1111 1110 (32 bits)

To convert to 32 bit number copy the digit in the MSB of the 16 bit number for 16 times and
fill the left half.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.4 Computer Organization & Instructions

2.2 FIXED POINT ARITHMETIC

Afixed-pointnumberrepresentationis areal data typefor anumberthat has afixed

number of digits after the radix point or decimal point.

This is a common method of integer representation is sign and magnitude
representation. One bit is used for denoting the sign and the remaining bits denote the
magnitude. With 7 bits reserved for the magnitude, the largest and smallest numbers
represented are +127 and —127. Fixed-point numbers are useful for representing fractional
values, usually in base 2 or base 10, when the executing processor has no floating point unit
(FPU) or if fixed-point provides improved performance or accuracy for the application at
hand. Most low-cost embedded microprocessors and microcontrollers do not have an FPU.

A value of a fixed-point data type is essentially an integer that is scaled by a specific
factor. The scaling factor is usually a power of 10 (for human convenience) or a power of 2
(for computational efficiency). However, other scaling factors may be used occasionally, e.g. a
time value in hours may be represented as a fixed-point type with a scale factor of 1/3600 to
obtain values with one-second accuracy. The maximum value of a fixed-point type is the
largest value that can be represented in the underlyinginteger type, multiplied by the scaling
factor; and similarly for the minimum value.

Example:

The value 1.23 can be represented as 1230 in a fixed-point data type with scaling
factor of 1/1000.

Precision loss and overflow

1 Thefixedpoint operations can produce results that have more bits than the operands
there is possibility for information loss.

7 Inorder to fit the result into the same number of bits as the operands, the answer
must be rounded or truncated.

7 Fractional bits lost below this value represent a precision loss which is common in
fractional multiplication.

0 If anyinteger bits are lost, however, the value will be radically inaccurate.

7 Some operations, like divide, often have built-in result limiting so that any positive
overflow results in the largest possible number that can be represented by the
current format.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.4 Arithmetic

7 Likewise, negative overflow results in the largest negative number represented by
the current format. Thisbuiltin limiting is oftenreferred to as saturation.

" Some processors support a hardware overflow flag that can generate an exception on
the occurrence of an overflow, butitisusually too late to salvage the proper result at

this point.
2.2.1 Addition and Subtraction
In addition, the digits are added bit by bit from right to left, with carries passed to the

next digit to the left. Subtraction operation is also done using addition: The appropriate
operand is simply negated before being added.

Addition: A+B; A: Augend; B:Addend
Subtraction: A-B: A: Minuend; B: Subtrahend

Add Subtract Magnitude
Operation Magnitude (When A>B When A<B When A=B

(+A) + (+B) +A+B)

(+A) + (- B) +A-B) -(B-A) +A-B)
(-A) + (+B) -(A-B) +B-A) +A-B)
(-A)+(-B) | -(A+B)
(+A) - (+B) +A-B) -(B-A) +A-B)
(+A) - (-B) +A + B)
(-A) - (+B) | -(A+B)
(-A) - (-B) -(A-B) +B-A) +A-B)

Fig 2.1: Addition and Subtraction operation

| B Register |
Ef Complamenter amd
Paraliel Adder
O erflow

i I

| AT |

Fig 2.2: Hardware for addition / subtraction

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.6 Computer Organization & Instructions
Add Subtract
| |

Minuend in AC
Subtrabhend in B

e,

| pensimac |

AC +~AC + B BC = BE = B
V i~ ovarflow V' 4— ovaerflow
END
a) Addition b) Subtraction

Fig 2.2: Addition and subtraction algorithm

Steps for addition:

0 Place the addend in register B and augend in AC.

7 Add the contents in B and AC and place the result in AC.

7 Vregister will hold the overflow bits (if any).

Steps for subtraction:

7 Place the minuend in AC and subtrahend in B.
1 Add the contents of AC and Ii1s complemented B. Place the result in AC.

7 Vregister will hold the overflow bits (if any).

¥y 'd e | o ¥ _
G \ @) 1 R | (C-arrias)
g: h @ Qe P o« b % 4 o
o 0o D Fbog S
© 0o (© o0 (@1 (1)1 (1)o (0) 1

Fig 2.3: Manipulating carry

The figure 2.3 shows binary addition with carries from right to left. The rightmost bit
adds 1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0.
Hence, the operation for the second digit to the rightis 0 + 1 + 1. This generates a 0 for this
sum bit and a carry out of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1
and a sum bit of 1. The fourth bitis 1+ 0 + 0, yielding a 1 sum and no carry. If there is a carry
at this bit, it will be stored in the overflow register.

Overflow occurs in subtraction when we subtract a negative number from a positive
number and get a negative result, or when we subtract a positive number from a negative
number and get a positive result. This means borrow occurred from the sign bit.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.7 Arithmetic
Operation Operand A Operand B Resultindicating
overflow
A+B >=0 >=0 <0
A+B <0 <0 >=0
A-B >=0 <0 <0
A-B <0 >=0 >=0

Example 2.2: Add 6 and 7.

00000000 0000 0000 00000000 00000111,y = 7¢er
+ 0000 0000 0000 0000 0000 000000000110,,5 = Byen

= 00000000 0000000000000000000011014ye = 13¢en
Example 2.3: Subtract 6 from 7.

DU0D 0000 0000 0000 0000 0000000001110, = 7ven

- 0000 0000 0000 0000 0000 0C00 000001 10,0 = by,

- 000000000000 00000000000000000001 4,4 = lig

Example 2.4: Subtract 2 from If through ()5 complement.

ooQ0 000000000000 0000 DO00D Q000011

“Lwh " Lt

: LI 1100 0TI 100000001000 0101 1010, = =
- 00000000000000000000 000000000001, = 1yen
The MIPS instructions for addition and subtraction are given in the following table:
Instruction Example Operation
Add Add Ss1, Ss2, $s3 S1=s2+s30verflow detected
Subtract Sub $s1, $s2, Ss3 S1=s2-s30verflow detected
Add Immediate Addi Ss1, Ss2, 100 S1=s2+1000verflow detected
Add unsigned Addu $s1, Ss2, Ss3 S1=s2+s30verflow undetected
Subtract unsigned Subu S$s1, $s2, S$s3 S1=s2-s30verflow undetected
Add immediate unsigned Addiu $s1, Ss2, 100[S1=s2+1000verflow undetected

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.8 Computer Organization & Instructions

2,22 Multiplication

Multiplicationisseenasrepeatedaddition. Thefirstoperandiscalled the multiplicand
and the second the multiplier. The final result is called the product. The number of digits in
the product is larger than the number in either the multiplicand or the multiplier. The length
of the multiplication of an n-bit multiplicand and an m-bit multiplier is a product thatisn+m
bits long. The steps in multiplication are:

7 Place a copy of the in the proper place if the multiplier digitisa 1

7 Place 0in the proper place if the digit is 0.

Multiphiend = 1

1. Test
MultiplierD

Multiplie =0

¥
1a. . Add multiphcand to product and
place tha result in Product rogister

|

2. Shift the Multipicand registar leff 1 bit

'1[
3. Shift the Mukipliar register rght 1 bit

No: < 32 repetitions

32nd rapatition?
Yes: 32 rapetitions

Dane

Fig 2.4: Basic multiplication algorithm

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.9 Arithmetic

Booth’s Algorithm:

Booth algorithm gives a procedure for multiplying binary integers in signed- (s
complement representation.)t operates on the fact that strings of s in the multiplier require no
addition but just shifting, and a string of %s in the multiplier from bit weight {2k to weight 2™ can
be treated as 2k+1—2m,

For example, the binary number 001110 (+14) has a string %ss from {Zih to {24 1k=i,
m=1). The number can be represented as 2k+1- 2m =24 - 21 =16 — 2 = 14. Therefore,

the multiplication M X 14, where M is the multiplicand and 14 the multiplier, can be done as
M X 24—MX 21, Thus the product can be obtained by shifting the binary multiplicand M four
times to the left and subtracting M shifted left once.

Booth algorithm requires examination of the multiplier bits and shifting of partial
product. Prior to the shifting, the multiplicand may be added to the partial product,
subtracted

From the partial, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first
least significant 7 in a string of %1s in the multiplier.

1. The multiplicand is added to the partial product upon encountering the first 0 in a
string of /s in the multiplier.

3. The partial product does not change when multiplier bit is identical to the previous
multiplier bit.

The algorithm works for positive or negative multipliers in 5 complement
representation. This is because a negative multiplier ends with a string of #;s and the last
operation will be a subtraction of the appropriate weight. The two bits of the multiplier in on
and Qn+1 are inspected. If the two bits are equal to 10, it means that the first 1 in a string of
11s has been encountered. This requires a subtraction of the multiplicand from the partial
product in AC.)f the two bits are equal to ¥%, it means that the first ¥ in a string of /s has
been encountered. This requires the addition of the multiplicand to the partial productin AC.
When the two bits are equal, the partial product does not change.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

Computer Organization & Instructions

(START)

L

y

Ac-0O0 §
M « Multiplicand
) « Multiplier

Connt +— n !
| i oin 3]
[]
= 10 fﬁ; ‘
| =11 1
= " l“j

A—A-M | AeA+M ||
e s]

L

Arithmetic shift

o| Right: A, Q, 0_y [de—d
Count -

Count — 1|

Fig2.5: FlowchartforBooth’ s
algorithm Example (Z.5: Multiply 7 and ¥a using Booth’ s

algorithm.
A Q Lo] M

0o00a 0011 1] 0111 Initial valuas
1001 0811 1] 0111 A &= =R —H}_ First
1100 1001 1 0111 Shift cyvele
Second
1110 0100 1 0111 Shift f’ cycle
0101 0100 1 0111 A+ 1{}_ Third
0010 1010 0111 s'uft cyclo
JL Fourth
0001 0101 1] 0111 Shift cycle

The product is available in AQ.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.9 Arithmetic
Example 2.6 : Multiply -5 and -7 using Booth’s algorithm
A Q Q-1 M
0000 1001 0 4
0101 1001 0
0010 1100 1 3
17101 1100 1
1110 1110 0 2
1111 0111 0 1
0010 0011 1 0

The product is available in AQ

2,23 Division

Division is repeated subtraction. The two operands (dividend and divisor) and the result
(quotient) of divide are accompanied by a second result called the remainder. The following
are the terminologies:

Dividend: A number being divided.

Divisor: A number that the dividend is divided by.

Quotient: The primary result of a division; a number that when multiplied by the
divisor and added to the remainder produces the dividend.

Remainder: The secondary result of a division; a humber that when added to the
product of the quotient and the divisor produces the dividend

Dividend = Quotient * Divisor + Remainder

Divisor 1000,

1001, Cluotient
1001010, Dhividend
1000
1
1016
o LLILH]

e, Remainder

Fig 2.6: Division Terminologies

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.12 Computer Organization & Instructions

&a, Shil e Guatient registtr o the left, | | 25 Aestore e original valus by adding
saling the e rightmost bt To 1 s Cingine rmgisies ta D Fierrainder
negisker and plsoe the sum in e
Famainder rejgistar. Alsa skl the
Quatient register 1o the left, seifing e
rese heist sigrificant bit o 0

|
3. Sl the Dsisor meggestir right 1 bit

Fig 2.7: Basic division operation

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.13 Arithmetic

M * Divisor

START Q « Dividend
Count«— n, A «— 0

'

Shift left: A, Q
At A-M

Qe 0
ATAEM
4’| Count *— Count -1
No Gt~ 0 Yes | Quotient in
_uur‘: END Remainder in A

Fig 2.8: Fixed point division
Example 2.7: Divide -7 by 3

A Q M=0011
0000 0111 Initial values

0000 1110 Shift '
1101 A=A-M 1
0000 1110 A=A+M

0001 1100 Shift
1110 A=A-M ;2
0001 1100 A=A+M

0011 1000 Shift }

0000 AeReepif’ Ti3
0000 1001 Q. =
0001 0010 Shift
1110 A=A-M } 4

0001 0010 A=A+M
Quotient=0010Remainder=0001

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.14 Computer Organization & Instructions

Example 2.8: Divide -7 by -3

A Q M=110
1111 1M1 Imitial valoes

1111 0010 Shif l
0ain Subirict
1111 0010 Restore J
1110 0100 Shft l
LELY Subtract | 2
1110 0100 Resiore |

1100 1M Shin }
3

1

1111 Subtruct
il el g, =

1111 MOy Shad
LT Subtract + 4
1111 (MMIDY Bestore

Example 2.9: Divide 7 by 3

A Q M=0011
(MM 0111 Initial values
NNy 1110 Shin
11001 Subtract ¢ |
M} 1110 Restore
(N THIMd Shin
1110 Subtract |
(MMl 11040 Restore
0011 1M Shifd
(HMHE Subtract) 3
0000 1001 o, |

(Ml 0010 Shif
1110 Subiract | 4
(N 1 10 Restore

s

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.14 Arithmetic
Example 2.10: Divide -7 by 3
A Q M=0D011
1111 TEHND Imitiad values
1111 D010 Shift
Mo Addd |
1111 0010 Reswore
110 o Shf l
(MM Add
1110 0100 Restore]
110400 T(HM} Shife]
1111 ".11'.1 3
11l 1ok [
1111 0010 Shifi l
0010 4
1111 | 10 | | H.Lﬂ\.'ll'L [
MIPS instructions for multiplication and division
Category Example Description
Multiply mult $s2, $s3 Hi, lo=s2 * s3

64 bit signed product in Hi, Lo

Multiply unsigned

multu $s2, $s3

Hi, lo=s2 * s3
64 bit signed product in Hi, Lo

Divide

div $s2, Ss3

Lo=s2/s3 (Quotient)
Hi=s2 mod s3 (Remainder)

Divide unsigned

divu $s2, S$s3

Lo=s2/s3 (unsigned Quotient)
Hi=s2 mod s3 (Remainder)

Move from Hi

mfhi $s1

S1=Hi Used to get a copy of Hi

Move from Lo

mflo Ss1

S1=lo Used to get a copy of Lo

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.16 Computer Organization & Instructions

2.3 FLOATING POINT ARITHMETIC

To represent the fractional binary numbers (IEEE 754 floating point format), it is
necessary to consider floating point. If the point is assumed to the right of the sign bit, we can
represent the fractional binary numbers as given below:

- T & Y & Fi ® 5=l = e W 1.':I'.".II
B={bp® 2" +#by ™ 2" +bia* 4 Dupel) ™ !

With this fractional number system, we canrepresent the fractional numbers in the following
range,

| < Fel -2

The binary point is said to be float and the numbers are called floating point
numbers. The position of binary point in floating point numbers is variable and hence
numbers must be represented in the specific manner is referred to as floating point
representation. The floating point representation has three fields. They are:

Sign: Sign bit is the first bit of the binary representation. 1721 implies negative number

and 1 £+ implies positive number.

Example: 11000001110100000000000000000001. This is negative number
since it starts with 1.

7 Exponent: It starts from bit next to the sign bit of the binary representation. The
exponentfieldisneededtorepresentboth positiveandnegativeexponents. Todothis,
a bias is added to the actual exponent in order to get the stored exponent. For IEEE
single-precision floats, this value is 127. Thus, to express an exponent of zero, 127 is
stored in the exponent field. A stored value of 200 indicates an exponent of (200"127),
or (£, The exponents of 472(21E wall £'s x and +72121E wall 72s) are reserved for special
numbers.

Double precision has an 11-bit exponent field, with a bias of 1023. Example: For 8 bit
conversion: 8 =23-1-1=3, Bias=3.

For 32 bit conversion: 32=281-1= 127. Bias=127.

0 Significant digits or Mantissa: It is calculated from the remaining 23 bits of the
binary representation.)t consists of 172 and a fractional part. This represents the

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.18 Arithmetic

Precision bits of the number. It is composed of animplicit leading bit (left of the radix
point) and the fraction bits (to the right of the radix point). To find out the value of the
implicit leading bit, consider that any number can be expressed in scientific notation
in many different ways.

Example: 50 can be represented as

—

. 0.050 x 103

2. .5000 x 103

0 5.000 x 101

0 50.00 x 100

0 5000. x 102
Inordertomaximize thequantity of representable numbers, floating-pointnumbers
are typically storedin normalized form. This basically puts the radix point after the
first non-zero digit. In normalized form, 50 is represented as 5.000 x 101.

I | | T T 1 1
31 30‘29[28 27 [26 25424|23‘22‘21‘20 19|18|1'?|1G|15|14|13 12111 10‘9‘8|?_6|5|4|3|2‘1;0
5 exponent fraction
1 bit 11 bits 20 bits

l fraction (continued}) I

32 bits
Fig 2.9: Parts of floating point number

Conversion of Decimal number to floating point:

Sign bit: 1 implies negative number and 0 implies positive number.

Exponent: Tofind theexponentvalueforbinaryrepresentation, expressthe number
by the nearest smaller or equal to 2knumber. The bias is determined by 2x1-1, where

1kr is the number of bits in exponent field. Add the bias with k value to express the
exponent in binary form.

7 Mantissa: Move the binary point so that there is only one bit from the left. Adjust the
exponent of 2 so that the value does not change. Thisis normalizing the number. Now,
consider the fractional part and represented as 23 bits by adding zeros.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.18 Computer Organization & Instructions

Example 2.11. Find the decimal equivalent of the floating point number:
01000001110100000000000000000000

Sign=0

Exponent:

10000011=1314¢

131-127=4

Exponent= 24=16

Mantissa:

Remaining 23 bits: 10100000000000000000000

=1*(1/2)+0*(1/4)+15(1/8 1 + E* @ 72/7glE k4o = £.1XZ® Decimal number=Sign * Exponent *
Mantissa

=-1*16*0.625=-26
Example 2.11: Find the floating point equivalent of -17.
Sign=1 (-ve number)
Exponent:
Bias for 32 bit = 127 (281-1 = 127) 127 + 4 = 131=10000011,
Mantissa:
17 = 10001,=1.0001 x 24
Fractional part=00010000000000000000000 -17 =1 10000011

00010000000000000000000,

Terminologies:

7 Overflow: Asituationinwhich a positive exponent becomes too large tofitin the
exponent field.

7 Underflow: Asituation in which a negative exponent becomes too large to fitin
the exponentfield.

7 Double precision: A floating point value represented in two 32-bit words.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.19 Arithmetic

0 Single precision: Afloating point value represented in a single 32-bit word.

Sign | Exponent | Fraction
Single Precision | 1[31] | 8[30-23] | 23 [22-00]
Double Precision | 1[63] | 11 [62-52] | 52 [51-00]

Fig 2.10: Floating point formats

Example 2.12: The IEEE-754 32-bit floating-point representation pattern is 0 10000000 110
0000 0000 0000 0000 0000. What is the number?

Sign bit S = 0 (positive number)

Exponent E = 10000000, = 1284 (in normalized form)
Fraction is 1.11, (with an implicit leading 1) = 1 + 1x2-1+ 1x22= 1,754
The number is +1.75 x 2 (128-127) = +3 54,

Example 2.13: Suppose that IEEE-754 32-bit floating-point representation pattern is 1
01111110 100 0000 0000 0000 0000 0000. Find the decimal number.

Sign bit S = 1 (negative number)

E =0111 1110, = 1264, (in normalized form)
Fractionis1.1;(withanimplicitleading1)=1+2-1=1.54¢

The numberis-1.5x 2" (126-127) =-0.75D

Example 2.14: Suppose that IEEE-754 32-bit floating-point representation pattern is 1
01111110 000 0000 0000 0000 0000 0001. What is the decimal number?

Sign bit S = 1 (negative number) E = 0111 1110, = 1264, (in hormalized form) Fraction is
1.000 0000 0000 0000 0000 0001B (with an implicit leading 1) = 1 + 223

The number is - (1 + 2-23) x 2(126-127) = -0.500000059604644775390625

Example2.15:Express85.125insingleanddouble precision.
85 =1010101
0.125 = 001

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.20 Computer Organization & Instructions

85.125 = 1010101.001
=1.010101001 x 2¢
Sign =0
1. Single precision:
Biased exponent 127+6=133
133 = 10000101
Normalized mantisa = 010101001
The IEEE 754 Single precision = 0 10000101 01010100100000000000000

2, Double precision:

Biased exponent 1023+6=1029

1029 = 10000000101

Normalized mantisa = 010101001

The IEEE 754 Double precision=

0 10000000101 010101001000

23.1 Floating point addition and subtraction

Floating-point numbers are coded as sign/magnitude, reversing the sign-bit inverses
the sign. Consequently the same operator performs as well addition or subtraction according
to the two operandss signs. The steps in floating point addition are:

0 Rewritethesmaller numbersuchthatits exponent matcheswith the exponent
of the larger number.

0 Add themantissas

7 Renormalize the mantissa by shifting mantissa and adjusting the exponent.

7 Check for overflow/underflow of the exponent after normalization.

7 If the mantissa does not fit in the space reserved for it, it has to be rounded off.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.19

Arithmetic

S

1. Covrmaie T sngposeris of P Peas msmhess
SHilt the mrsiller ot By ey sl el i |
S sl et e B escpesnesme

|

| 2 ks e srcarets |
=~
{ & MNosmadkee the sm, either shitiog dotd 2ed

EESTerTeT B et o st el
=l SecaeTeeniEa g The eyl

Sl M

R

Fig 2.11: Flowchart for floating point addition / subtraction

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

Fractian

ign | Expanant

Fracticn

L

Sign | Expanant
¥
b ¥
Smakl ALl
¥
Exponaint
difference
L S
(o_1)=

= | Shift right

-

S =

3

Increamant or
decrameant

&= Ehilt lah or right

’_i'

= | Rounding nardware

1.22

Y Y

|

Sign

Exponent

Fraction

Compara
mpunents

Shift smaller
nurmber right

Add

Mormallze

Rounad

Computer Organization & Instructions

Fig 2.12: Hardware for floating point addition

The addition operation proceeds as the exponent of one operand is subtracted from
the other using the small ALU to determine which is larger and by how much. This difference
controls the three multiplexors; from left to right, they select the larger exponent, the
significant of the smaller number, and the significant of the larger number. The smaller

significant is shifted right, and then the significant are added together using the big ALU.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.23 Arithmetic

The normalization step then shifts the sum left or right and increments or decrements the
exponent. Rounding then creates the final result, which may require normalizing again to
produce the final result.

Example 2.16: Add 0.5 + (-0.4375)
0.5=0.1 x20=1.000 x 2-1 (normalized)
-0.4375 = -0.0111 x 20 = -1.110 x 2-2 (normalized)

Step 1: Rewrite the smaller number such that its exponent matches with the exponent of the
larger number.
-1.110x22=-0.1110 x 21
Step 2:Addthemantissas
1.000 x 2-1+
-0.1110 x 21
0.001 x 2-1

Step 3: Renormalize the mantissabyshiftingmantissaand adjusting the exponent.s0.001 x 2-
1=1.000 x2-4
-126 <= -4 <= 127 (-4 is within the range of -126 and 127).No overflow or underflow

Step 4: The sum fits in 4 bits so rounding is not required

Example 2.17: Express the following numbersin IEEE 754 format and find their sum:

2345.125 and 0.75.Single precision format of 2345.125:

| O | 1{!{}{}1{}1{1| 00100101001001000000000

Single precision format of 0.75:

L] | 011113110 | 10000000000000000000000 |

Exponent of 2345.125 > exponent of 0.75 10001010-01111110=00000110 = (12)10

Shift 0.75 to 12 positions right: 0.00000000000110000000000 Add:
1. 00100101001001000000000 (1 is added before . since this is a positive number)

+ 0.00000000000110000000000 (0 is added before . since it is a negative number)
1. 00100101001111000000000

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.24 Computer Organization & Instructions

The sum is normalized. There is no underflow. The final sum is

|n 10001010 | 0010010100111 1000000000

Theresultis +ve hence Oisfilled in the sign field. The exponent value of 2345.125is copiedin
the exponent field of the result, since the 0.75is adjusted to the exponent of 2345.125.

Example 2.18: Subtract-1.00000000000000010011010x2-1from
1.00000000101100010001101x2-6 .
+1.00000000101100010001101x2-6
-1.00000000000000010011010x2-1
Change the +1.00000000101100010001101x2-¢ into power of 2-6.

0.00001000000001011000100 01101x2-1

To perform subtraction take ii;s complement of-1.00000000000000010011010x2-" which is 1
0.11111111111111101100110 x 2-'(Here first 1 is the overflow bit).

Now add both numbers
0 0.00001000000001011000100 01101x2-1
1 0.11111111111111101100110 x 21
1.00001000000001000101010 01101x2-1

23.2 Floating point multiplication

The following are the steps in floating point multiplication:

Add the exponents

Multiply the significant digits
Normalize the product

Round-off the product (if necessary)

o R s I ¢

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.25 Arithmetic

i, Aol e Eesec] espprasnis of s Ba
| hnlh_h—.dm |

2 Whukehy e sgruScacss |
3. MHormraise ke procuct B necessary. shiflirg
" i el IO rerrasnliseg Thes SpeCErsETIE

Fe=

| &, Set the sigr of B pretocd o posibee e
‘wigre. of the origenal opesasess ara s same:
if theey differ Mok e aign esegalisees

Fig 2.13: Flowchart for Floating point multiplication

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.26 Computer Organization & Instructions

Example 2.19: Multiply 1.110x 101°by 9.200 x 10-5. Express the productin 3 decimal places.
1. Add the exponents
Exponent of the product=10-5=5

Multiply the significant digits 1.110 x 9.200=10.212000
Normalize the product

10.212 x 105=1.0212 x 106
4. Round-off

1.0212 x 10¢= 1.021 x 10¢

Example 2.20: Perform binary multiplication on 0.5 and -0.4375.
0.5= 1.000 x 2-1

0.4375=-1.110 x 2-21.

Add the exponents

Exponent of the product=-1+-2=-3

7 Multiply the significant digits 1.000 x -1.110=-1.110
7 Normalize the product

-1.110 x 10-3is already normalized.

Example 2.21: Multiply -1.110 1000 0100 0000 10101 0001 x 2-4and 1.100 0000 0001 0000
0000 0000 x 2-2.
1. Add the exponents
Exponent of the product=-4 + -2=-6 2. Multiply the significant digits
-1.110 1000 0100 0000 10101 0001 x 1.100 0000 0001 0000 0000 0000
=10.1011100011111011111100110010100001000000000000
3. Normalize the product 1.01011100011111011111100110010100001000000000000 x 2-5
4, Round-off (Only 23 fraction bits)
1.01011100011111011111100x2-5

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.27 Arithmetic

2.3.3 MIPS floating pointinstructions

MIPS provide several instructions for floating point numbers for performing the
following operations:

Arithmetic
7 Data movement (memory and registers)
7 Conditional jumps
Floating Point (FP) instructions work with a different bank of registers. Registers are named
$f0 to $f31. MIPS floating-point registers are used in pairs for double precision numbers and
referred using even numbers. Single precision numbers end with .s and double precision
numbers end with .d.

Category Example Description
FP add single add.s $f2, $f4, $f6 f2=f4 + f6
FP subtract single sub.s $f2, $f4, $f6 f2=f4 - f6
FP multiply single mul.s $f2, $f4, $f6 f2=f4 * f6
FP divide single div.s $f2, $f4, $f6 f2=f4 / f6
FP add double add.d $f2, $f4, S$fé f2=f4 + f6
FP subtract double sub.d $f2, $f4, $fé6 f2=f4 - f6
FP multiply double mul.d $f2, $f4, $fé6 f2=f4 * f6
FP divide double div.d $f2, $f4, 5$f6 f2=f4 -/f6
Load wordcopr, 1 Lwcl $f1, 100 (Ss2) F1=memory[s2+100]32 bit data to
FP register
Store word copr, 1 Swcl $f1, 100 (Ss2) Memory[s2+100]=f132 bit data to
memory
Branch on FP true Bclt 25 If(cond==1) goto PC+4+100PC
relative branch if cond is true
Branch on FP false Bclt 25 If(cond==0) goto PC+4+100PC
relative branch if cond is false

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.29 Computer Organization & Instructions

FP compare single C.lt.s 52, 54 If(f2 < f4) Cond=1; else cond=0
(eq, ne, i, le, gt, ge)

FP compare double C.lt.d $f2, $f4 If(f2 < f4) Cond=1; else cond=0
(eq,ne, li,le, gt, ge)

2.4 HIGH PERFROMANCE ARTHMETIC

The performance improvement in arithmetic operations like addition, multiplication
and division will increase the overall computational speed of the machine.

241 High performance adders

The high performance adders takes an extra input namely the transit time.

The transmit time of alogical unitis used as a time base in comparing the operating
speeds of differentmethods, and thenumber of individuallogicalunits requiredis
used in the comparison of costs.

The two multi-bit numbers being added together will be designated as A and B, with
individual bits being A1, A2, B1, etc. The third input will be C. Outputs will be S (sum) R
(carry), and T (transmit). The two multi bit numbers being added together will be designated
asA and B, with individual bits being A1, A2, B1, etc. The third input will be C. Outputs will be
S (sum) R (carry), and T (transmit).

The time required to perform an addition in conventional adder is dependent on the time
required for a carry originating in the first stage to ripple through all intervening stages

tothe SorRoutput of the final stage. Using the transit time of a logical block as a unit of time,
this amounts to two levels to generate the carryin the first stage, plus two levels per stage for
transit through each intervening stage, plus two levels to form the sum in the final stage,
which gives a total of two times the number of stages.
Cn=Rn-1
¢n=bn-1 11Tn-1 Rn-2
¢n=bn-1 11Tn-1 bn-2 11Tn-1Tn2 Rn-3

By allowing n to have successive values starting with one and omitting all terms
containing a aresulting negative subscript, it may be seen that each stage of the adder will

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.29 Arithmetic

require one OR stage with ninputs and n AND circuits having one through ninputs, where
N is the position number of the particular stage under consideration.

2.4.2 High performance Multiplication

Multiplication using variable length shift

7 Themultiplier and the partial product will always be shifted the same amount and at
the same time.

7 The multiplier is shifted in relation to the decoder, and the partial product with
relation to the multiplicand.

7 Operation is assumed starting at the low-order end of the multiplier, which means
that shifting is to the right.

0 Ifthelowest-order bit of the multiplierisaone, itistreated as thoughithad been
approached by shifting across zeros.

7 When shifting across zeros (from low order end of multiplier), stop at the first one.

a) If thisoneis followed immediately by azero, add the multiplicand, then shiftacross
all following zeros.

b) If thisoneis followed immediately by asecond one, subtract the multiplicand, then
shift across all following ones.

1. When shifting across ones (from low order end of multiplier), stop at the first zero.
a) If this zerois followed immediately by a one, subtract the multiplicand, then shift
across all following ones.

b) If this zero is followed immediately by a second zero, add the multiplicand, then

shift across all following zeros.

7 A shift counter or some equivalent device must be provided to keep track of the
number of shifts and to recognize the completion of the multiplication.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.30 Computer Organization & Instructions

7 If the high-order bit of the multiplier is a one and is approached by shifting across
ones, that shift will be to the first zero beyond the end of the multiplier, and that zero
along with the bit in the next higher order position of the register will be decoded to
determine whether to add or subtract.

7 For this reason, if the multiplier is initially located in the part of the register in which
the product is to be developed, it should be so placed that there will be at least two
blank positions between the locations of the low-order bit of the partial product and
the high-order bit of the multiplier.

7 Otherwise the low-order bit of the product will be decoded as part of the multiplier.

Multiplication Using Uniform Shifts

7 Multiplication which uses shifts of uniform size and permits predicting the number of
cycles that will be required from the size of the multiplier is preferable to a method
that requires varying sizes of shifts.

7 The most important use of this method is in the application of carry-save adders to
multiplication although it can also be used for other applications.

Uniform shifts of two
7 Assume that the multiplier is divided into two-bit groups, an extra zero being added to
the high-order end, if necessary, to produce an even number of bits.

7 Onlyone addition or subtraction will be made for each group, and, using the position of
the low-order bitin the group as areference, this addition or subtraction will consist of

either two times or four times the multiplicand.
1 These multiples may be obtained by shifting the position of entry of the multiplicand
into the adder one or two positions left from the reference position.
The last cycle of the multiplication may require special handling.

Following any addition or subtraction, the resulting partial product will be either
correct or larger than it should be by an amount equal to one times the multiplicand.

0 Thus, if the high-order pair of bits of the multiplier is 00 or 10, the multiplicand would
be multiplied by zero or two and added, which gives a correct partial product.

7 If the high-order pair of bits is 01 or 11, the multiplicand is multiplied by two or four,

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.31 Arithmetic

notoneorthree, and added. This gives a partial product that is larger than it should
be, and the next add cycle must correct for this.

7 Following the addition the partial product is shifted left- two positions. This multiplies
it by four, which means that it is now larger than it should be by four times the
multiplicand.

7 This may be corrected during the next addition by subtracting the difference between

four and the desired multiplicand multiple.

0 Thus, if a pair ends in zero, the resulting partial product will be correct and the
following operation will be an addition.

7 Ifapairendsinaone, the resulting partial product will be too large, and the following
operation will be a subtraction.

7 It can now be seen that the operation to be performed for any pair of bits of the
multiplier may be determined by examining that pair of bits plus the low-order bit of
the next higher-order pair.

0 If the bit of the higher-order pair is a zero, an addition will result; if it is one, a
subtraction will result. If the low-order bit of a pairis considered to have a value of one
and the high-order bit a value of two, then the multiple called for by a pair is the
numerical value of the pair if that value is even and one greater if it is odd.

7 If the operation is an addition, this multiple of the multiplicand is used. If the operation

is a subtraction (the low-order bit of the next higher order pair a one), this value is

combined with minus four to determine the correct multiple to use.

7 Theresult will be zero or negative, with a negative result meaning subtract instead of
add.

Multiplication Using Carry-Save Adders

When successive additions are required before the final answer is obtained, it is
possible to delay the carry propagation beyond one stage until the completion of all of
the additions, and then let one carry-propagate cycle suffice for all the additions.
Adders used in this manner are called carry-save adders.

1 A carry-save adder consists of a number of stages, each similar to the full adder. It
differsfromtheripple-carryadderinthat the carry (R) outputis not connecteddirectly

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.32 Computer Organization & Instructions

tothenext-higher-orderstageof thesameadder, butgoestoanintermediateregister
or other device in the same manner as the sum (S) output.

7 A carry-save adder has three inputs which, as far as use is concerned, may be
considered identical, and two outputs which are not identical and must be treated in
different manners.

7 The procedure for adding several binary numbers by using a carry-save adder would be
as follows.

1 Designate the inputs for the nth bit as A, B,, and C, and the outputs for the same bit as
S»and R, where S, is the sum output and R. is the carry output.
In the first cycle enter three of the input numbers into A, B, and C.

In the second cycle enter the S and R obtained from the previous cycle into Aand B and
the fourth input number into C.

In this operation S, goes into A,, but R, goes into B,., where B, .. isin the next higher-
order bit position than B.

7 Thisis continued until all of the input numbers have been entered into the adder.

7 Eachaddcycleadvancesallcarriesone position, add cycles asalready described may be
continued with zeros being entered into the third input each time until the R outputs of

all stages become zero.

7 Thealternative is to enter S and R into a carry-propagate adder and allow time for one
cycle throughit.

7 This carry-propagate adder may be completely separate from the carry-save unit, or it
may be a combined unit with a control line for selecting either carry-save or carry-

propagate operation.

0 SUB WORD PARALLELISM

Asubwordis alowerprecisionunitofdatacontainedwithinaword. Insubword
parallelism, multiple subwords are packedinto aword and thenprocesswhole
words.

With the appropriate sub word boundaries this technique results in parallel processing of sub
words. Since the same instruction is applied to all sub words within the word, thisisa

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

2.33 Arithmetic

form of SIMD(Single Instruction Multiple Data) processing. It is possible to apply sub word
parallelism to noncontiguous sub words of different sizes within a word. In practical
implementation is simple if sub words are same size and they are contiguous within a word.
The data parallel programs that benefit from sub word parallelism tend to process data that
are of the same size.

Example: If word size is 64bits and sub words sizes are 8,16 and 32 bits. Hence an

instruction operates on eight 8bit sub words, four 16bit sub words, two 32bit sub words or
one 64bit sub word in parallel.

Advantages of sub word parallelism

7 Sub word parallelism is an efficient and flexible solution for media processing
because algorithm exhibit a great deal of data parallelism on lower precision data.

7 It is also useful for computations unrelated to multimedia that exhibit data
parallelism on lower precision data.

7 Graphics and audio applications can take advantage of performing simultaneous
operations on short vectors.

7 One key advantage of sub word parallelism is that it allows general-purpose
processors to exploit wider word sizes even when not processing high-precision data.

0 The processor can achieve more sub word parallelism on lower precision data rather
than wasting much of the word-oriented data paths and registers.

Support for sub word parallelism

7 Data-parallel algorithms with lower precision data map well into sub word-parallel
programs.

1 The support required for such sub word-parallel computations then mirrors the
needs of the data-parallel algorithms.

7 To exploit data parallelism, we need sub word parallel compute primitives, which
perform the same operation simultaneously on sub words packed into a word.

1 These may include basic arithmetic operations like add, subtract, multiply, divide,
logical, and other compute operations.

ECE/III YR/ Computer Architecture And Oreanization

EC8552- Computer Architecture And Organization

1.34 Computer Organization & Instructions

[Data-parallel computations also need

1. Data alignment before or after certain operations for sub words representing fixed-
point numbers or fractions

1. Sub word rearrangement within a register so that algorithms can continue parallel

processing at full clip

3. A way to expand data into larger containers for more precision in intermediate
computations. Similarly, a way to contract it to a fewer number of bits after the
computationts completion and before its output.

4, Conditional execution

5. Reduction operations that combine the packed sub words in a register into a single
value or a smaller set of values.

6. Away to clip higher precision numbers to fewer bits for storage or transmission.

1. The ability to move data between processor registers and memory, as well as the
ability to loop and branch to an arbitrary program location.

ECE/III YR/ Computer Architecture And Oreanization

