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Number Representation 
 

Sign Magnitude 
Sign magnitude is a very simple representation of negative numbers. In sign magnitude the first bit is 

dedicated to represent the sign and hence it is called sign bit. 
Sign bit ‘1’ represents negative sign. 
Sign bit ‘0’ represents positive sign. 
In sign magnitude representation of a n – bit number, the first bit will represent sign and rest n-1 bits 

represent magnitude of number. 
  
For example, 
+25 = 011001 
Where 11001 = 25 
And 0 for ‘+’ 
-25 = 111001 
Where 11001 = 25 
And 1 for ‘-‘. 

 
Range of number represented by sign magnitude method = -(2n-1-1) to +(2n-1-1) (for n bit number) 
 



2’s complement method 
 

To represent a negative number in this form, first 
we need to take the 1’s complement of the 
number represented in simple positive binary 
form and then add 1 to it. 

For example: 

(-8)10 = (1000)2 

1’s complement of 1000 = 0111 

Adding 1 to it, 0111 + 1 = 1000 

So, (-8)10 = (1000)2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Range of number represented by 2’s 
complement = (-2n-1 to 2n-1 – 1) 
 
 



Ripple carry adders 

 
for each adder block, the two bits that are to 
be added are available instantly. However, 
each adder block waits for the carry to arrive 
from its previous block. So, it is not possible to 
generate the sum and carry of any block until 
the input carry is known. The  block waits for 
the  block to produce its carry. So there will be 
a considerable time delay which is carry 
propagation delay. 

 





Carry Look-ahead Adder 

 

A carry look-ahead adder reduces the 
propagation delay by introducing more 
complex hardware. In this design, the 
ripple carry design is suitably 
transformed such that the carry logic 
over fixed groups of bits of the adder is 
reduced to two-level logic.  





Advantages and Disadvantages of 
Carry Look-Ahead Adder : 

 
Advantages – 

The propagation delay is reduced. 

It provides the fastest addition logic. 

Disadvantages – 

The Carry Look-ahead adder circuit gets 
complicated as the number of variables increase. 

The circuit is costlier as it involves more number of 
hardware. 

 



Booth algorithm 

• Booth algorithm gives a procedure for multiplying binary integers in 
signed 2’s complement representation in efficient way, i.e., less number 
of additions/subtractions required. It operates on the fact that strings of 
0’s in the multiplier require no addition but just shifting and a string of 1’s 
in the multiplier from bit weight 2^k to weight 2^m can be treated as 
2^(k+1 ) to 2^m. 

• As in all multiplication schemes, booth algorithm requires examination of 
the multiplier bits and shifting of the partial product. Prior to the shifting, 
the multiplicand may be added to the partial product, subtracted from the 
partial product, or left unchanged according to following rules: 

• The multiplicand is subtracted from the partial product upon encountering 
the first least significant 1 in a string of 1’s in the multiplier 

• The multiplicand is added to the partial product upon encountering the 
first 0 (provided that there was a previous ‘1’) in a string of 0’s in the 
multiplier. 

• The partial product does not change when the multiplier bit is identical to 
the previous multiplier bit. 

 



Booth algorithm contd. 



• Example – A numerical example of 

booth’s algorithm is shown below for n = 4. 

It shows the step by step multiplication of -

5 and -7. 

• MD = -5 = 1011, MD = 1011, MD'+1 = 0101 MR 
= -7 = 1001  



 
 

The explanation of first step is as 
follows: 

 OPERATION AC MR QN+1 SC 

0000 1001 0 4 

AC + MD’ + 1 0101 1001 0 

ASHR 0010 1100 1 3 

AC + MR 1101 1100 1 

ASHR 1110 1110 0 2 

ASHR 1111 0111 0 1 

AC + MD’ + 1 0010 0011 1 0 

Product is calculated as follows: 
Product = AC MR Product = 0010 0011=35  



Division algorithm(Restoring) 
 

• A division algorithm provides a quotient and a 
remainder when we divide two number. They 
are generally of two type slow algorithm and 
fast algorithm. Slow division algorithm are 
restoring, non-restoring, non-performing 
restoring, SRT algorithm and under fast comes 
Newton–Raphson and Goldschmidt. Restoring 
term is due to fact that value of register A is 
restored after each iteration. 



Division algorithm flow chart 
 



Examples: 
Perform Division Restoring Algorithm Dividend = 11 Divisor = 3 

N M A Q OPERATION 

4 00011 00000 1011 initialize 

00011 00001 011_ shift left AQ 

00011 11110 011_ A=A-M 

00011 00001 0110 
Q[0]=0 And 
restore A 

3 00011 00010 110_ shift left AQ 

00011 11111 110_ A=A-M 

00011 00010 1100 Q[0]=0 

2 00011 00101 100_ shift left AQ 

00011 00010 100_ A=A-M 

00011 00010 1001 Q[0]=1 

1 00011 00101 001_ shift left AQ 

00011 00010 001_ A=A-M 

00011 00010 0011 Q[0]=1 



Non-Restoring division 

• Non-Restoring division is less complex than 
the restoring one because simpler operation 
are involved i.e. addition and subtraction, also 
now restoring step is performed. In the 
method, rely on the sign bit of the register 
which initially contain zero named as A. 



Division algorithm(Non Restoring) 
 



 
Examples: Perform Non_Restoring Division for 

Unsigned Integer Dividend =11 Divisor =3 -M =11101 

 N M A Q ACTION 

4 00011 00000 1011 Start 

00001 011_ Left shift AQ 

11110 011_ A=A-M 

3 11110 0110 Q[0]=0 

11100 110_ Left shift AQ 

11111 110_ A=A+M 

2 11111 1100 Q[0]=0 

11111 100_ Left Shift AQ 

00010 100_ A=A+M 

1 00010 1001 Q[0]=1 

00101 001_ Left Shift AQ 

00010 001_ A=A-M 

0 00010 0011 Q[0]=1 

Quotient = 3 (Q) Remainder = 2 (A) 



Floating point representation of 
numbers 

 
• 32-bit representation floating point numbers IEEE 

standard 
 

Normalization 
• Floating point numbers are usually normalized 
• Exponent is adjusted so that leading bit (MSB) of 

mantissa is 1 
• Since it is always 1 there is no need to store it 
• Scientific notation where numbers are normalized to 

give a single digit before the decimal point like in 
decimal system e.g. 3.123 x 103 
 



Floating point arithmatic 

• A finite number can also represented by four 
integers components, a sign (s), a base (b), a 
significand (m), and an exponent (e). Then the 
numerical value of the number is evaluated as 

• (-1)s x m x be ________ Where m < |b| 
• Depending on base and the number of bits used 

to encode various components, the IEEE 
754 standard defines five basic formats. Among 
the five formats, the binary32 and the binary64 
formats are single precision and double precision 
formats respectively in which the base is 2. 

 

http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008


IEEE Standard 754 Floating Point 
Numbers 

 
• The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point 

computation which was established in 1985 by the Institute of Electrical and Electronics Engineers 
(IEEE). The standard addressed many problems found in the diverse floating point implementations 
that made them difficult to use reliably and reduced their portability. IEEE Standard 754 floating 
point is the most common representation today for real numbers on computers, including Intel-
based PC’s, Macs, and most Unix platforms. 

• There are several ways to represent floating point number but IEEE 754 is the most efficient in most 
cases. IEEE 754 has 3 basic components: 

• The Sign of Mantissa – 
This is as simple as the name. 0 represents a positive number while 1 represents a negative 
number. 

• The Biased exponent – 
The exponent field needs to represent both positive and negative exponents. A bias is added to the 
actual exponent in order to get the stored exponent. 

• The Normalised Mantissa – 
The mantissa is part of a number in scientific notation or a floating-point number, consisting of its 
significant digits. Here we have only 2 digits, i.e. O and 1. So a normalised mantissa is one with only 
one 1 to the left of the decimal. 

• IEEE 754 numbers are divided into two based on the above three components: single precision 
and double precision. 
 



Table – 1 Precision Representation 

Precision Base Sign Exponent Significand 

Single 
precision 

2 1 8 23+1 

Double 
precision 

2 1 11 52+1 





Example  
 

85.125 85 = 1010101 0.125 = 001 85.125 = 1010101.001 
=1.010101001 x 2^6 sign = 0  

1. Single precision: biased exponent 127+6=133 133 = 
10000101 Normalised mantisa = 010101001 we will add 0's 
to complete the 23 bits The IEEE 754 Single precision is: = 0 
10000101 01010100100000000000000 This can be written 
in hexadecimal form 42AA4000  

2. Double precision: biased exponent 1023+6=1029 1029 = 
10000000101 Normalised mantisa = 010101001 we will add 
0's to complete the 52 bits The IEEE 754 Double precision 
is: = 0 10000000101 
010101001000000000000000000000000000000000000000
0000 This can be written in hexadecimal form 
4055480000000000  



• Special Values: IEEE has reserved some values that can ambiguity. 
• Zero – 

Zero is a special value denoted with an exponent and mantissa of 0. -0 and +0 are 
distinct values, though they both are equal. 

• Denormalised – 
If the exponent is all zeros, but the mantissa is not then the value is a 
denormalized number. This means this number does not have an assumed leading 
one before the binary point. 

• Infinity – 
The values +infinity and -infinity are denoted with an exponent of all ones and a 
mantissa of all zeros. The sign bit distinguishes between negative infinity and 
positive infinity. Operations with infinite values are well defined in IEEE. 

• Not A Number (NAN) – 
The value NAN is used to represent a value that is an error. This is represented 
when exponent field is all ones with a zero sign bit or a mantissa that it not 1 
followed by zeros. This is a special value that might be used to denote a variable 
that doesn’t yet hold a value. 
 



EXPONENT MANTISA VALUE 

0 0 exact 0 

255 0 Infinity 

0 not 0 denormalised 

255 not 0 Not a number (NAN) 

DENORMALIZED NORMALIZED 
APPROXIMATE 

DECIMAL 

Single Precision 
± 2-149 to (1 – 2-

23)×2-126 
± 2-126 to (2 – 2-

23)×2127 

± approximately 
10-44.85 to 
approximately 
1038.53 

Double Precision 
± 2-1074 to (1 – 2-

52)×2-1022 
± 2-1022 to (2 – 2-

52)×21023 

± approximately 
10-323.3 to 
approximately 
10308. 



Floating point addition and subtraction 



 
floating point addition 

 
For example, we have to add 1.1 * 103 and 50. 
We cannot add these numbers directly. First, we need to align 

the exponent and then, we can add significand. 
After aligning exponent, we get 50 = 0.05 * 103 
Now adding significand, 0.05 + 1.1 = 1.15 
So, finally we get (1.1 * 103 + 50) = 1.15 * 103 
Here, notice that we shifted 50 and made it 0.05 to add these 

numbers. 
  
Now let us take example of floating point number addition 
We follow these steps to add two numbers: 

 



1. Align the significand 
2. Add the significands 
3. Normalize the result 
Let the two numbers be 
         x = 9.75 y = 0.5625 
 Converting them into 32-bit floating point representation, 
9.75’s representation in 32-bit format = 0 10000010 

00111000000000000000000 
0.5625’s representation in 32-bit format = 0 01111110 

00100000000000000000000 
Now we get the difference of exponents to know how much 

shifting is required. 
 



(10000010 – 01111110)2 = (4)10 
 Now, we shift the mantissa of lesser number right side by 4 units. 
Mantissa of 0.5625 = 1.00100000000000000000000 
(note that 1 before decimal point is understood in 32-bit 

representation) 
Shifting right by 4 units, we get 0.00010010000000000000000 
Mantissa of 9.75 = 1. 00111000000000000000000 
 Adding mantissa of both 
0. 00010010000000000000000 
+ 1. 00111000000000000000000 
1. 01001010000000000000000 
In final answer, we take exponent of bigger number 

 



So, final answer consist of : 

Sign bit = 0 

Exponent of bigger number = 10000010 

Mantissa = 01001010000000000000000 

32 bit representation of answer = x + y = 0 
10000010 01001010000000000000000 

 



FLOATING POINT SUBTRACTION 
 

Subtraction is similar to addition with some differences like we subtract 
mantissa unlike addition and in sign bit we put the sign of greater number. 

  
Let the two numbers be 
x = 9.75 

y = – 0.5625 
  
Converting them into 32-bit floating point representation 
9.75’s representation in 32-bit format = 0 10000010 

00111000000000000000000 
– 0.5625’s representation in 32-bit format = 1 01111110 

00100000000000000000000 
 

 
 



Now, we find the difference of exponents to know how much shifting is required. 

(10000010 – 01111110)2 = (4)10 
Now, we shift the mantissa of lesser number right side by 4 units. 

Mantissa of – 0.5625 = 1.00100000000000000000000 

(note that 1 before decimal point is understood in 32-bit representation) 

Shifting right by 4 units, 0.00010010000000000000000 

Mantissa of 9.75= 1. 00111000000000000000000  

Subtracting mantissa of both 

0. 00010010000000000000000 

– 1. 00111000000000000000000 

1. 00100110000000000000000 

  

Sign bit of bigger number = 0 

So, finally the answer = x – y = 0 10000010 00100110000000000000000 


