
All Online Learning
www.allonlinelearning.com

Time Complexity of Algorithms

Time complexity of an algorithm signifies the total time required by the program to run to
completion.

The time complexity of algorithms is most commonly expressed using the big O notation.

Time Complexity is most commonly estimated by counting the number of elementary functions
performed by the algorithm. And since the algorithm's performance may vary with different
types of input data, hence for an algorithm we usually use the worst-case time complexity of an
algorithm because that is the maximum time taken for any input size.

Calculating Time Complexity:

Now the most common metric for calculating time complexity is Big O notation. This removes
all constant factors so that the running time can be estimated in relation to N, as N approaches
infinity.

In general you can think of it like this :

statement;

Above we have a single statement. Its Time Complexity will be Constant. The running time of
the statement will not change in relation to N.

for(i=0; i < N; i++)
{
 statement;
}

The time complexity for the above algorithm will be Linear. The running time of the loop is
directly proportional to N.

for(i=0; i < N; i++)
{
 for(j=0; j < N;j++)
 {
 statement;
 }
}

All Online Learning
www.allonlinelearning.com

This time, the time complexity for the above code will be Quadratic. The running time of the
two loops is proportional to the square of N. When N doubles, the running time increases by N *
N.

while(low <= high)
{
 mid = (low + high) / 2;
 if (target < list[mid])
 high = mid - 1;
 else if (target > list[mid])
 low = mid + 1;
 else break;
}

This is an algorithm to break a set of numbers into halves(two part), to search a particular field.

Now, this algorithm will have a Logarithmic Time Complexity. The running time of the
algorithm is proportional to the number of times N can be divided by 2. This is because the
algorithm divides the working area in half with each iteration.

void quicksort(int list[], int left, int right)
{
 int pivot = partition(list, left, right);
 quicksort(list, left, pivot - 1);
 quicksort(list, pivot + 1, right);
}

Taking the previous algorithm forward, above we have a small logic of Quick Sort. Now in
Quick Sort, we divide the list into halves every time, but we repeat the iteration N times (where
N is the size of list). Hence time complexity will be N*log(N). The running time consists of N
loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear
and logarithmic.

NOTE : In general, doing something with every item in one dimension is linear, doing
something with every item in two dimensions is quadratic, and dividing the working area in half
is logarithmic.

All Online Learning
www.allonlinelearning.com

Types of Notations for Time Complexity

Now we will discuss and understand the various notations used for Time Complexity.

1. Big Oh denotes "fewer than or the same as" <expression> iterations.
2. Big Omega denotes "more than or the same as" <expression> iterations.
3. Big Theta denotes "the same as" <expression> iterations.
4. Little Oh denotes "fewer than" <expression> iterations.
5. Little Omega denotes "more than" <expression> iterations.

Understanding Notations of Time Complexity with Example

O(expression) is the set of functions that grow slower than or at the same rate as expression.

Omega(expression) is the set of functions that grow faster than or at the same rate as expression.

Theta(expression) consist of all the functions that lie in both O(expression) and
Omega(expression).

Suppose you've calculated that an algorithm takes f(n) operations, where,

f(n) = 3*n^2 + 2*n + 4. // n^2 means square of n

Since this polynomial grows at the same rate as n^2, then you could say that the function f lies in
the set Theta(n^2). (It also lies in the sets O(n^2) and Omega(n^2) for the same reason.)

The simplest explanation is, because Theta denotes the same as the expression. Hence, as f(n)
grows by a factor of n^2, the time complexity can be best represented as Theta(n^2).

Examples:

All Online Learning
www.allonlinelearning.com

Reynolds 2006 Complexity 2

Sequential Search Pseudocode

Read all the names into array NAMES.
index = 0
matchFound = false
locationOfMatch = -1

while(matchFound == false and index < length_of_NAMES_array) do
if(NAMES[index] == "Debbie Drawe") then

matchFound = true
locationOfMatch = index

else
index = index + 1

endWhile

if(matchFound == true) then
print("Match found at name " & index)

else
print("Match not found")

EndOfAlgorithm

Reynolds 2006 Complexity 5

Sequential Search Performance

• What is best case performance?

• 1*(while loop time) + overhead

• What is average case performance?

• (n/2)*(while loop time) + overhead

• What is worst case performance?

• n*(while loop time) + overhead

All Online Learning
www.allonlinelearning.com

Reynolds 2006 Complexity 6

Insertion Sort

• Given a set to be sorted, use the card
player’s approach:
– Add each new item at the appropriate place in

the set of already sorted items.

Reynolds 2006 Complexity 7

Insertion Sort Pseudocode
Read all the numbers into array NUMS.

numberIndex = 1
sortedIndex = 0

while(numberIndex < length_of_NUMS_array) do
newNum = NUMS[numberIndex]
sortedIndex = numberIndex - 1

/* From high to low, look for the place for the new number.
If the previously sorted numbers are larger, move them up
in the array NUMS.

*/
while(NUMS[sortedIndex] > newNum and sortedIndex >= 0) do

NUMS[sortedIndex + 1] = NUMS[sortedIndex]
sortedIndex = sortedIndex - 1

endWhile

/* We found the place for the new number, so insert it. */
NUMS[sortedIndex + 1] = newNum
numberIndex++
sortedIndex = numberIndex -1;

endWhile

All Online Learning
www.allonlinelearning.com

Reynolds 2006 Complexity 8

Performance of Insertion Sort
• Execution time will increase with the size of

the set to be sorted (outer while loop)

• Each element to be sorted must be compared
one or many times with the elements already
sorted (inner while loop).

Reynolds 2006 Complexity 9

Insertion Sort Performance
• What is best case performance?
• Items already sorted

• n*(outerWhile) + 1*(innerWhile) + overhead

• What is average case performance?
• n*(outerWhile) + n*(n/2)*(innerWhile) + overhead

• What is worst case performance?
• Items already sorted in reverse order

• n*(outerWhile) + ((n2 – n)/2)*(innerWhile) + overhead

• What is Theta?
• Θ(n2).

